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ClSiH3 in the temperature range 330-370 0 C. With similar 
A factors, this result implies that insertion into ClSiH3 had an 
activation energy at least 5 kcal/mol greater. If the A factor 
for insertion into Si2H6 were ten times higher, the difference 
in insertion activation energies would still have to be equal or 
greater than 2.5 kcal/mol. We have also observed that SiH2 
insertion into CH3PH2 does not compete with insertion into 
SJ2H63 under conditions where SiH3PH23 was of similar sta
bility to Si3Hg. Thus, again assuming similar activation en
tropies, the activation energy for SiH2 insertion into CH3PH2 
is significantly greater than for SiH2 insertion into CH3SiH3. 
The fact that the activation energies of SiH2 insertion into 
silicon-hydrogen (and phosphorus-hydrogen) bonds can differ 
by as much as 3-5 kcal/mol strongly suggests that the absolute 
E values for all of these SiH2 insertion reactions are signifi
cantly greater than the very low values (from 0 to 1.3 kcal/ 
mol) previously suggested.4-24 
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a silicon-to-magnesium bond, bis(trimethylsilyl)magnesium 
1,2-dimethoxyethane. 

Experimental Section 

AU studies were carried out using standard Schlenk tube, drybox, 
or high vacuum techniques. All solvents used were of standard reagent 
quality and were dried by refluxing over NaK or LiAlH4 and distilled 
for immediate use or storage on the vacuum system. The magnesium 
used in the initial experiments was of high purity obtained from Dow 
Chemical Co.; however, subsequent studies were carried out with equal 
success using Grignard quality magnesium turnings. The trimethyl-
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Table I. Atomic Coordinates for Mg(SiMe3)J-DME" 

Atom 

Si(I) 
Mg(2) 
C(3) 
C(4) 
C(5) 
C(6) 
0(7) 
C(8) 

H(I) 
H(2) 
H(3) 
H(4) 
H(5) 
H(6) 
H(7) 
H(8) 
H(9) 
H(IO) 
H ( I l ) 
H(12) 
H(13) 
H(14) 

Atom 

Si(D 
Mg(2) 
C(3) 
C(4) 
C(5) 
C(6) 
0(7) 
C(8) 

S1 1 

4.64(7) 
4.56(11) 

14.53(56) 
6.59(38) 
8.34(43) 
9.24 (42) 
5.99 (20) 
8.04(39) 

X 

0.1228(1) 
0.0 (0) 
0.1572(5) 
0.2212(4) 
0.0984 (4) 
0.1070(4) 
0.0403 (2) 
0.0384 (4) 

0.1710 
0.2038 
0.1106 
0.2660 
0.2322 
0.2109 
0.0513 
0.1420 
0.0799 
0.1583 
0.0856 
0.1054 
0.0216 
0.0865 

B2I 

5.09 (7) 
4.53(12) 

19.89(80) 
11.33(48) 
6.24(37) 
9.22 (46) 
5.31 (20) 
5.51 (27) 

Ba 

7.84(9) 
8.27(15) 

10.10(47) 
13.21 (47) 
25.29 (82) 

9.22 (39) 
7.42(21) 
9.88(45) 

y 

0.3885(2) 
0.2590(2) 
0.3208(10) 
0.3981 (7) 
0.5816(7) 
0.0882(7) 
0.0803 (3) 

-0.0499 (6) 

0.2222 
0.3684 
0.3114 
0.4399 
0.2977 
0.4324 
0.5882 
0.6397 
0.6252 
0.0487 
0.0300 
0.1787 

-0.1116 
-0.0893 

Bn 

-0 .93 (7) 
0.0 (0) 

-8 .25(55) 
-1 .24(33) 
-1 .28 (29 ) 

1.39(34) 
1.21 (14) 
0.80(25) 

Z 

0.1521 (1) 
0.2500 (0) 
0.0114(6) 
0.2313(6) 
0.1265(8) 
0.4201 (5) 
0.3448 (3) 
0.2832(5) 

0.0280 
-0.0215 
-0.0377 

0.1899 
0.2249 
0.3066 
0.0779 
0.0964 
0.1956 
0.3949 
0.4805 
0.4598 
0.3442 
0.2480 

BM B23 

0.42(8) - 0 . 3 4 ( 8 ) 
1.00(13) 0.0(0) 
4.78(44) -4 .56(51) 

-0 .54(37) 1.21(44) 
-0 .88 (54) 4.61 (45) 
-2 .61(37) -1 .57(35) 
-0 .17(18) -0 .57(18) 
-1 .39(31) -0 .89(32) 

B 

13.47 
13.47 
13.47 
10.83 
10.83 
10.83 
11.37 
11.37 
11.37 
9.74 
9.74 
9.74 
8.21 
8.21 

fiiso 

5.62(8) 
5.50(12) 

12.24(58) 
9.85 (44) 

10.33 (50) 
8.85(41) 
6.07 (20) 
7.47(35) 

" Standard deviations from the variance-covariance matrix are given in parentheses for the least significant digit(s). * The form of the an
isotropic temperature factor reported here is -'/4 (B]\a2h2 + B22b

2k2 + B])C2I2 + 2Bl2abhk + IB^achl + 2B2)bckI). 

Table II. Bond Distances and Angles for Mg(SiMe3)2-DME 

Mg(2)-Si(l) 
Mg(2)-0(7) 
0(7)-C(6) 
0(7) -C(8) 
C(8)-C(8') 
Si( l)-C(3) 
Si( l)-C(4) 
Si(I)-C(S) 

Distance (A) 

2.630(2) 
2.124(4) 
1.422(6) 
1.422(6) 
1.492(10) 
1.884(7) 
1.878(6) 
1.874(7) 

Si ( l ) -Mg(2)-Si ( l ' ) 
S i ( l ) -Mg(2) -0 (7 ) 
Mg(2)-0(7)-C(6) 
0 (7 ) -Mg(2) -0 (7 ' ) 
Mg(2)-0(7)-C(8) 
0(7)-C(8)-C(8 ' ) 
C(6)-0(7) -C(8) 
Mg(2)-Si( l ) -C(3) 
Mg(2)-Si( l ) -C(4) 
Mg(2)-Si( l)-C(5) 
C(3)-Si( l ) -C(4) 
C(3)-Si( l ) -C(5) 
C(4)-Si( l ) -C(5) 

Angles (deg) 

125.2(1) 
111.0(1) 
122.5(3) 
76.3(2) 

113.0(3) 
107.1 (4) 
112.9(4) 
118.2(2) 
117.4(2) 
110.5(2) 
101.9(3) 
104.0(4) 
102.8(3) 

chlorosilane was graciously supplied by Dow-Corning Corporation 
and distilled before use. 

Synthesis of Compounds. Bis(trimethylsilyl)mercury was prepared 
by reaction of 0.5% sodium amalgam with trimethylchlorosilane as 
previously described.6 

Bis(trimethylsilyl)magnesium 1,2-dimethoxyethane was prepared 
as follows: A reaction tube was loaded with Hg(SiMe3)2 (10g, 28.9 
mmol), excess of magnesium turnings (5 g, 205.7 mmol), and 20 ml 
of 1,2-dimethoxyethane (DME), evacuated and sealed. It was then 
covered with aluminum foil and placed on a rotating shaker. The initial 
color of the reaction mixture was yellow-green. The reaction proceeded 
slowly and could be followed by a progressive color change from the 
initial yellow-green to orange (2-3 days), red-orange (4-8 days), deep 
red (9-15 days), and finally (4-5 weeks) to a pale red solution from 

which clear pink crystalline material was precipitated and sepa
rated. 

The crystalline material was found to be sparingly soluble in hy
drocarbon solvents such as cyclopentane but quite soluble in ethers 
such as DME, THF, or diethyl ether. The crystalline material was very 
reactive undergoing immediate decomposition on exposure either to 
air or moisture and even appears to undergo some decomposition when 
stored under vacuum in the dark. The analysis7 for this material cal
culated for Mg(SiMe3J2-DME is: Mg, 9.33; C, 46.1; H, 10.75. Found: 
Mg, 9.82; C, 47.38; H, 10.53. 

Recrystallization of this material from cyclopentane yielded very 
pale pink crystals which melted between 74 and 77 0C in a sealed 
capillary. 

A similar reaction sequence was observed when THF was used as 
the solvent, yielding a brownish white solid on removal of the solvent. 
On dissolving this material in cyclopentane, the solution turned dark 
green and at low temperature yielded clear, white crystals which 
melted at room temperature. On removal of the solvent dark yellow-
brown crystals appeared which melted between 43 and 44 0C. Analysis 
for Mg(SiMe3J2-THF Calcd.: Mg, 10.04; C, 49.58; H, 10.74. Found: 
Mg, 11.11; C, 51.09; H, 10.79. 

NMR Studies. The 60-MHz NMR spectra were obtained on a 
Varian A-60 equipped with a variable temperature probe and control 
unit. Line positions were determined using the audio frequency side 
bands of the solvent or of internal cyclopentane and were then cor
rected to positions relative to Me4Si by addition of the appropriate 
factor. Negative values indicate positions upfield from Me4Si. All 
samples were made in the drybox by addition of the appropriate silicon 
compounds to NMR tubes fitted with standard taper joints and 
stopcocks. These samples were then removed from the drybox and 
attached to the vacuum system and the desired solvents and/or 
standards added, followed by degassing of the samples which were 
then sealed off. All samples were stored at —20 0C until the spectra 
were obtained. 
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Figure 1. The molecular structure of the bis(trimethylsilyl)magnesium 
1,2-dimethoxyethaneadduct with significant distances and angles. 

X-ray Crystallographic Study. Data Collection. A single crystal of 
Mg(SiMe3h-DME with dimensions 0.34 X 0.26 X 0.55 mm was 
sealed in a capillary under argon and mounted on a Syntex P2] four-
cicle diffractometer. The radiation was Mo Ka (0.710 69 A) which 
had been diffracted from a graphite monochromator in the parallel 
orientation. Preliminary rotation photographs and counter data re
vealed the crystal was orthorhombic, Pbcn with cell dimensions (de
termined by accurately centering 15 general reflections) a = 16.461 
(2), b = 9.348 (1), c = 11.950 (2) A, and p = 0.941 g cm"3 calculated 
for four molecules per unit cell. The high reactivity precluded an ex
perimental density determination. Intensity data were collected by 
the 8-28 scan method at a scan rate of 2°/min and with a scan range 
from Kai —1.0° to Ka2 +1.0°. Standard deviations were assigned 
to each reflection according to: a{I) = [aC0Unter(/)2 + (0.04/)2]'/2 

where <xcounter = (/ + K2B)'/2,1 = net intensity, B = total background 
counts, and K = ratio of scan time to background time (2.0). Ex
tinction and absorption corrections were not applied. 

In the 0-45° 18 shell there was a slow decrease in the three stan
dards, with a maximum decrease of 9%, which was corrected by ap-

Figure 2. A stereoscopic view of the Mg(SiMe3J2-DME molecule. The atoms 
for sake of clarity. 

Figure 3. A stereoscopic view of the unit cell of Mg(SiMe3J2-DME. 

plication of decay factors. In the 45-50° 28 shell, the standards 
dropped by more than 50%; this shell was thus discarded. Of the 1423 
independent reflections with 28 < 45°, 642 had / > 2.5<r(/) and were 
used in the solution and refinement of the structure. 

Solution and Refinement. The structure was solved by direct 
methods with the program MULTAN.8 Phasing was carried out upon 
104 £"s normalized according to parity groups with magnitudes 
greater than 1.3. The solution with the highest overall figure of merit 
was used to calculate an F-map in which six of the eight independent 
non-hydrogen atoms were found. A subsequent Fourier synthesis es
tablished the remaining non-hydrogen positions.9 Full-matrix an
isotropic least-squares refinement on F yielded discrepancy factors 
of R1 = -EWF0] - |F C | | / |F 0 | = 0.155 and R2 = [lw(\F0\ -
IFcI)2ZZtVF0

2]1/2 = 0.186. Hydrogen atom positions were assigned 
1.0 A from the carbon atoms in expected geometry and were verified 
from a different Fourier synthesis.10 Least-squares refinement of 
non-hydrogen atomic parameters with fixed contributions from the 
hydrogen atoms with isotropic thermal parameters set 10% higher than 
those of the atoms to which they are attached yielded final values of 
R i = 0.047, R2 = 0.054, error of fit of 1.671, and a residual electron 
density in the final difference synthesis of 0.15 e/A3. 

Atomic coordinates are given in Table I and bond distances and 
angles in Table II. A listing of calculated and observed structure 
factors (X 10) is available as supplementary material." 

Results and Discussion 

Figures 1, 2, and 3 show the molecular labeling with key 
values, the stereoscopic molecular view OfMg(SiMe3^-DME, 
and the packing of the molecules, respectively. The structure 
consists of discrete molecules of crystallographic symmetry 
2. The magnesium resides on a twofold axis and is tetrahedrally 
coordinated to two oxygen atoms and two silicon atoms. The 
magnesium-silicon distance of 2.63 A is somewhat longer than 
the sum of the covalent radii (2.41 A); this lengthening is 
comparable to that observed for Mg-C distances (Zr1 = 2.07 
A) in a variety of organomagnesium complexes12 including the 
somewhat analogous MgMe2-(NC7H 13)2 complexes'3 in which 
the observed Mg-C distance is 2.24 A. The Si-Mg-Si angle 
of 125° is greater than the tetrahedral value of 109.4°. This 
results from the steric repulsion of the bulky trimethylsilyl 
groups and the necessarily small O-Mg-0 angle which is re-

represented by 50% probability thermal ellipsoids with hydrogens deleted 
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Table IH. Dihedral Angles for Mg(SiMe3)2-DME 

Figure4.The 60-MHzNMR spectrum of a 1.5,'Imixture of Mg-
(SiMe.,) 2-DME and Hg(SiMe3J2 (DME solvent, - 5 0 0C). 

quired by the "bite-size" of the DME ligand and the Mg-O 
distances.14 The dihedral angle between the planes described 
by O-Mg-0 and the Si-Mg-Si moieties is 89.7°, emphasizing 
the tendency of the magnesium ion to attain tetrahedral 
symmetry. The chelate ring adopts a nonplanar skew confor
mation in order to achieve tetrahedral carbon and oxygen 
atoms with minimum intramolecular repulsions. 

The Si-C distances are essentially equal with an average 
value of 1.879 A. This distance is comparable with that of 1.87 
(3) reported for Si(Ph)4

15 and of 1.90 (I) reported for the 
complex Li2Hg(SiMe3)4.'6 The C-Si-C angles (102.9° av) 
are smaller than the tetrahedral value of 109.4°. 

The DME moiety appears relatively unstrained. The C-O 
distances average 1.422 A and the C-C distance is 1.492, 
somewhaf shorter than expected for sp3-carbons. The torsion 
angles of 174.5° for C(6)-C(7)-C(8)-C(8') and 53.1° for 
C(7)-C(8)-C(8')-C(7') are within 7° of the strain-free 
values. 

The NMR spectrum observed at room temperature for 
Mg(SiMe3)2-DME in DME solvent has a single line at 8 -0.09 
ppm (—5.4 Hz). When the crystalline adduct was dissolved in 
cyclopentane the upfield methyl resonance shifted to 8 —0.03 
ppm (2 Hz) and two lines associated with the DME appeared 
at 8 3.59 and 3.77 ppm. Integration of these signals and the line 
associated with the SiMe3 group corresponds to formation of 
the 1:1 adducts as shown by the chemical analysis. 

The Mg(SiMe3)2 derivative obtained inTHF solution gives 
a line associated with the SiMe3 group at 8 —0.07 ppm (—4.1 
Hz). When the solid material first obtained on removal of the 
THF under vacuum was dissolved in cyclopentane, the SiMe3 
resonance was at 8 +0.01 ppm (0.4 Hz). The integrated area 
of this line vs. the THF multiplet (8 1.99, 3.92 ppm) indicated 
formation of the 1:2 complex, Mg(SiMe3)2-2THF. 

This does not correspond to the analysis reported and is in
dicative of the ease with which the THF molecule may be lost. 
Thus, on dissolution in cyclopentane followed by its removal 
under vacuum, it appears that the following loss of solvent 
occurs: 

Mg(SiMe3)2-2THF — Mg(SiMe3)2-THF + THF (1) 

The new mono THF adduct does not have a sufficient number 
of groups to satisfy the typical four coordination about the Mg 
atom without some form of bridge formation. This could either 
be accomplished via an electron deficient silicon bridge bond 
as shown in I or via use of the THF molecule to occupy two 
coordination sites as indicated in II. There is precedent for I 
in the beryllium systems with formation of electron deficient 
bridged dimers and occupation of the fourth site by a Lewis 
base.17 

Limited variable temperature NMR studies on both the 
reaction mixture and on mixtures made by addition of 

Atoms defining 
plane 1 

0(7)-C(8)-C(8') 
C(6)-0(7)-C(8) 
C(6)-0(7)-Mg(2) 
C(6)-0(7)-Mg(2) 
0(7)-Mg(2)-Si(l) 
0(7)-Mg(2)-Si(l) 
0(7)-Mg(2)-Si(l) 
C(5)-Si(l)-Mg(2) 
C(4)-Si(l)-Mg(2) 
C(3)-Si(l)-Mg(2) 
0(7)-Mg(2)-Si(l) 
0(7)-0(7')-Mg(2) 
C(8)-0(7)-Mg(2) 

Atoms defining 
plane 2 

C(8)-C(8')-0(7') 
0(7)-C(8)-C(8') 
0(7)-Mg(2)-Si(l) 
0(7)-Mg(2)-Si(l') 
Mg(2)-Si(l)-C(3) 
Mg(2)-Si(l)-C(5) 
Mg(2)-Si(l)-C(4) 
Si(l)-Mg(2)-Si(l') 
Si(l)-Mg(2)-Si(l') 
Si(l)-Mg(2)-Si(l') 
Si(l)-Mg(2)-Si(l') 
0(7')-Mg(2)-Si(l) 
0(7)-Mg(2)-0(7') 

Angle between 
plane 1 & 2 

(deg) 

53.1 
174.5 
47.7 

-96.8 
86.4 

-153.9 
-36.5 
102.0 

-135.1 
155.6 
138.5 
107.6 

15.3 

" These torsion angles are based on a right-handed Klyne-Prelog 
convention. 

Table IV, Equations of Planes,» AX + BY + CZ - D = 0 

Plane B 

Si(l)-Mg(2)-Si(l') 
0(7)-Mg(2)-0(7') 
0(7)-C(8)-C(8') 
C(6)-0(7)-C(8) 
C(6)-0(7)-Mg(2) 
0(7)-Mg(2)-Si(l) 
C(3)-Si(l)-Mg(2) 
C(4)-Si(l)-Mg(2) 
C(5)-Si(l)-Mg(2) 

-0.501 
0.864 
0.476 
0.558 
0.623 

-0.112 
-0.636 

0.285 
-0.377 

0.0 
0.0 

-0.447 
0.420 

-0.255 
-0.588 

0.627 
-0.868 
-0.236 

-0.866 
-0.504 
-0.758 
-0.716 
-0.740 
-0.801 
-0.450 
-0.406 
-0.896 

-2.59 
-1.507 
-2.472 
-2.266 
-2.828 
-3.817 

0.175 
-3.314 
-3.246 

" The equations of mean planes are based upon an orthonormal unit 
set in which X, Y,Z are displacements in angstroms along the directions 
a, b, and c, respectively. 

Me3 

THF. 

Me 3Si^ ^ S i ^ 

Me3 

I 

,SiMe3 

"THF 

O Me3Si ^ O - ^ S i M e 3 

. M g Mg 
Me3Si ^ 0 C SiMe3 

II 

Hg(SiMe3)2 to Mg(SiMe3)2-DME in DME solution give rise 
to temperature dependent NMR spectra. At room temperature 
all mixtures show a single line 1-3 Hz wide with variable po
sition dependent upon composition of the mi tture. At ap
proximately —50 0C this line disappears and several new lines 
are observed indicating that at room temperature all species 
are exchanging trimethylsilyl groups while at low temperature 
several species are present which do not undergo exchange on 
the NMR time scale. 

These results are consistent with formation of magnesium 
silylmercurates similar in character to those reported for the 
silyllithium-silylmercury system.18 This conclusion is further 
supported by examination of the low temperature NMR 
spectrum shown in Figure 4 in which 199Hg satellites may be 
seen for the lines at 8 -0.13 (-7.5 Hz) and 5 0.03 (1.7 Hz). 
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The initial interpretation of these results based on a comparison 
with the corresponding silyllithium-silylmercury systems is 
that the line at 5—0.03 ppm with/199Hg-1H = 16 Hz arises from 
an anion of the form Hg(SiMe3)42~ and that centered at 5 0.13 
with /i^Hg-'H = 25.6 Hz is associated with an anion of the 
form H g ( S i M e ^ - . These results are in good agreement with 
those found for LiHg(SiMe3)3, /Hg-H = 18 Hz, and for 
Li2Hg(SiMe3)4, /Hg-H = 26 Hz. These suggested structures 
are unconfirmed as yet by other techniques, but the observed 
199Hg-1H coupling clearly shows that the species present must 
contain Hg-Si bonds with relatively long lifetimes which 
permit the coupling to be observed. 

Further work is now in progress to elucidate the structures 
of these species both in solution and in the solid state and to 
examine the possibility of formation of electron deficient 
silyl-bridged magnesium derivatives. 
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Abstract: Reductions of M(CO)5
-and M2(CO)io (M = Mn and Re) in hexamethylphosphoramidewith sodium metal provide 

high yields of the "super-reduced" species M(CO)4
3-, which contain manganese and rhenium in their lowest known oxidation 

states. Infrared and chemical evidence is presented to corroborate proposed formulations for these salts. Their reactions with 
electrophilic species including PI13ECI (E = Ge, Sn, Pb), Me3ECl (E = Ge, Sn), PI13PAUCI, and benzyl chloride, provide a 
unique route to new organometallic derivatives of stoichiometry (RjE)JM(CO),*-, (Ph3PAu)3M(CO)4, and (QH5CH:-
COhMn(CO)4

-. Physical properties of the anionic derivatives are discussed and compared to those of analogous neutral com
pounds of iron, ruthenium, and osmium. 
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